

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 341 (2006) 1630-1644

Synthesis of a set of sulfated and/or phosphorylated oligosaccharide derivatives from the carbohydrate–protein linkage region of proteoglycans

Jean-Claude Jacquinet*

Institut de Chimie Organique et Analytique, UMR CNRS 6005, UFR Faculté des Sciences, Université d'Orléans, BP 6759, F-45067 Orléans Cedex, France

Received 20 January 2006; received in revised form 7 February 2006; accepted 11 February 2006 Available online 3 March 2006

Abstract—The synthesis of a set of various sulfoforms and/or phosphoforms as 7-methoxy-2-naphthyl glycosides of β-D-Xylp, β-D-Galp-(1 \rightarrow 4)-β-D-Xylp, and β-D-Galp-(1 \rightarrow 3)-β-D-Galp-(1 \rightarrow 4)-β-D-Xylp, structures encountered in the common carbohydrate-protein linkage region of proteoglycans, is reported for the first time. These molecules will serve as probes for systematic studies of the substrate specificity of the glycosyltransferases involved in the early steps of the biosynthesis of proteoglycans. A straightforward divergent preparation was achieved using key intermediates, which were designed as common precursors.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Proteoglycans; Linkage region; Sulfoforms; Phosphoforms

1. Introduction

Proteoglycans (PGs) are complex macromolecules composed of glycosaminoglycan (GAG) chains covalently linked to a core protein. They are ubiquitously distributed on the cell surface and in the extracellular matrix. They are important regulators of many fundamental biological processes, and the elucidation of their biosynthesis pathways becomes an attractive challenge because of their implication in many pathologies and their potential as pharmaceutical targets. The construction of GAG chains is initiated by the synthesis of a common GAG-protein linkage structure, namely β -D-GlcpA-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)- β -D-Xylp-(1 \rightarrow 0) which is linked to L-serine residues of the core protein. This region is formed by a sequential stepwise addition of each sugar unit by respective *O*-glyco-

syltransferases (Fig. 1), and is a key step in the assembly of PGs. Occasionally, this linkage region may be modified by sulfation at C-4 and/or C-6 of the D-Galp units, as well as by phosphorylation at C-2 of the D-Xylp residue.³

The biological significance of these modifications is still not yet fully deciphered, although it has been suggested⁴ that they could act as biosynthetic signals. To shed light on the role of these unique substituents, the substrate specificity of the human galactose β -(1 \rightarrow 3)glucuronyltransferase (GlcAT-1) was recently analyzed⁵ with various synthetic⁶ sulfoforms of the disaccharide β -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow OMP), underlining the critical influence of the sulfate group located at C-6 of the reducing D-Galp unit. This result suggests that sulfation on this position is a critical feature that determines the ability of a molecule to serve (or not) as a substrate for GlcAT-1. The synthetic corresponding glucuronylated trisaccharide derivatives were also prepared⁷ to identify unambiguously the transfer products. In addition, it has been demonstrated⁵ that the xylose β -(1 \rightarrow 4)-galactosyltransferase (GalT-1) does not exhibit

^{*} Tel.: +33 38 41 70 04; fax: +33 38 41 72 81; e-mail: Jean-Claude. Jacquinet@univ-orleans.fr

Figure 1. The carbohydrate—protein linkage region of proteoglycans and the glycosyltransferases involved in its biosynthesis. The arrows indicate relevant substitutions with a sulfate (a) or a phosphate (b) group.

in vitro activity toward a C-2 phosphorylated xyloside, suggesting that the presence of this modification prevents recognition and/or transfer of the first D-Galp unit onto the xyloside derivative. However, this does not mean that this phosphate group is introduced before the transfer of the first D-Galp unit by GalT-1. In fact, it has been reported⁸ that this phosphorylation should be a transient phenomenon involved only in the very early steps of the biosynthesis.

Thus, it is now relevant to study the substrate specificity of the galactose β -(1 \rightarrow 3)-galactosyltransferase 6 (GalT-2) and the GlcAT-1 toward a as diverse as possible set of sulfated and phosphorylated structures. A chemical synthesis of several sulfated and/or phosphorylated glycosyl serine derivatives has been described,⁹ but no biological assays were reported for these molecules. We now report for the first time the systematic preparation of a set of sulfoforms and/or phosphoforms of various oligosaccharide derivatives from the linkage region (Fig. 2) which should be useful to gain further insight into the substrate specificity of the glycosyltransferase involved. All target compounds were prepared as their 7-methoxy-2-naphthyl glycosides in which the naphthyl group will be useful for the detection of the products in transfer assays, and the methoxy group will serve as a marker to check the purity of the synthetic products by NMR spectroscopy.

2. Results and discussion

For the synthesis of the target molecules 1–10 (Fig. 2), all derivatives were planned to be obtained from common precursors to reduce the number of transformations. Advantage was taken of the rather low regioselectivity observed 10 in the acetalation reaction of xylosides. The 3,4-substituted regioisomer 14 (Scheme 1) would allow short access to phosphoform 2, whereas its 2,3-substituted analog 13 could be used as an acceptor for elongation of the chain. The D-Galp moiety, containing 1,2-trans linkages, was constructed by means of 2-O-benzoylated glycosyl units activated as their trichloroacetimidates. 11 In the di- and trisaccharide structures.

9 $R^2 = H$, $R^6 = SO_3Na$

10 $R^2 = PO_3Na_2$, $R^6 = SO_3Na$

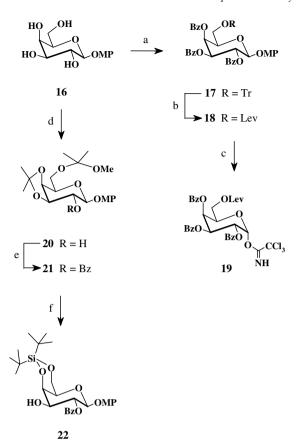
Figure 2. Target molecules.

the phosphate group could be introduced or not after construction of a suitably protected oligomer derivative.

Condensation of 1,2,3,4-tetra-*O*-acetyl-β-D-xylopyranose 11¹² with 7-methoxy-2-naphtol in dichloromethane, in the presence of trimethylsilyl triflate (TMS-OTf), gave crystalline 12 in 77% yield (Scheme 1), which was transesterified with methanolic sodium methoxide to afford the crystalline target molecule 1 in 94% yield. Treatment of 1 with 2-methoxypropene and 10-camphorsulfonic acid in *N*,*N*-dimethylformamide gave the crystalline minor 3,4-*O*-isopropylidene derivative 14 (23%) along with the 2,3-*O*-isopropylidene isomer 13 (69%). Phosphorylation at O-2 was then achieved by

Scheme 1. Reagents and conditions: (a) 7-methoxy-2-naphtol, TMSOTf, 4 Å mol. sieves, CH₂Cl₂, 0 °C, 2 h; (b) MeONa, MeOH, rt, 1 h; (c) 2-methoxypropene, CSA, DMF, rt, 90 min; (d) Ipr₂N-P(OBn)₂, 1-*H*-tetrazole, CH₂Cl₂, rt, 1 h; then *m*-CPBA, -10 °C, 30 min; (e) H₂, 10% Pd/C, AcOH, EtOAc/MeOH/H₂O, rt, 24 h.

treatment of **14** with dibenzyl N,N-diisopropylphosphoramidite and 1-H-tetrazole in dichloromethane, followed by in situ oxidation¹³ of the intermediary phosphite derivative with m-chloroperbenzoic acid to give the crystalline 2-phosphate **15** in 87% overall yield. The ¹H NMR spectra of **15** (Table 1) showed, in the signal for Xylp H-2, the expected additional coupling $^3J_{H,P}=9.0$ Hz. Full deprotection of **15** was achieved through catalytic hydrogenation (Pd/C) in an aqueous mixture of solvents, in the presence of acetic acid, to give directly the target molecule **2** in 80% overall yield. The ¹H (Table 4) and ¹³C NMR data (Table 5) of **2** are in full agreement with the expected structure, and showed the $^3J_{H,P}=9.0$ and $^2J_{C,P}=5.0$ Hz coupling, respectively, in the signals for Xylp H-2 and Xylp C-2, respectively.


For the preparation of the target disaccharide derivatives 3-6 according to our proposed strategy, an activated derivative of p-galactose equipped with a robust temporary protection at O-6 was needed. To this end, easily available 4-methoxyphenyl β-D-galactopyranoside 16¹⁴ was submitted to conventional tritylation-benzoylation process to give crystalline 17 in 90% yield (Scheme 2). Exchange of the protection at O-6 was then achieved through treatment of 17 with boron trifluoride diethyletherate and methanol¹⁵ in dichloromethane, a cleaner reaction than those by classical acid hydrolysis, followed by levulinovlation with 4-oxopentanoic acid (levulinic acid), 1,3-dicyclohexylcarbodiimide and 4-dimethylaminopyridine in dichloromethane to give 18 in 93% overall vield. Oxidative removal of the 4-methoxyphenyl group in 18 with ceric ammonium nitrate (CAN) followed by imidovlation with trichloroacetonitrile and 1,8-diazabicyclo[5,4,0]-undec-7-ene (DBU) afforded the α-imidate 19 in 78% overall yield. The ¹H NMR data of 19 (Table 1) were in agreement with the expected structure.

For the preparation of the target trisaccharide derivatives 7–10, a suitably protected and activated digalactosyl block should be constructed for further coupling with acceptor 13. Preparation of the central p-Galp unit was achieved from the common precursor 16 as follows (Scheme 2). Treatment of 16 with 2,2-dimethoxypropane (neat) and 10-camphorsulfonic acid under thermodynamic control¹⁶ gave directly the crystalline bis-acetal 20 in 75% yield along with the expected 2,6-diol (20%), which was retreated under the same conditions to afford an additional crop of **20**, raising the total yield to 90%. This procedure allowed direct access to a 3.4.6-trisubstitued derivative having its 2-hydroxy group free. Conventional benzovlation of **20** gave crystalline **21** in 94% yield. In the ¹H NMR spectra of **20** and **21** (Table 1), the J values observed strongly suggested a significant departure from the 4C_1 conformation in solution, probably due to the torsional effect of the 3,4-acetal group. Acid hydrolysis of 21 gave the corresponding crystalline triol derivative, which was treated with di-tert-butylsilyl

Table 1.	¹ H NMR	data:	carbohydrate	ring	protons f	or monosacci	haride	derivative	s 12–1	5 and 1	7–22 ^a
----------	--------------------	-------	--------------	------	-----------	--------------	--------	------------	--------	---------	-------------------

	12	13	14	15	17	18	19	20	21	22
H-1	5.27	5.45	5.05	5.28	5.16	5.24	6.88	4.66	4.95	4.97
$J_{1,2}$	6.5	7.5	6.5	5.5	8.0	8.0	3.5	8.2	7.5	8.0
H-2	5.29	3.70	3.75	4.79	5.91	6.01	6.03	3.82	5.48	5.59
$J_{2,3}$	8.0	ND	8.0	9.0	10.5	10.5	10.5	7.0	8.0	10.5
$J_{2,\mathrm{P}}$	_	_	_	9.0	_	_	_	_	_	_
H-3	5.24	3.70	3.68	3.84	5.59	5.61	5.92	3.73	4.30	3.78
$J_{3,4}$	8.0	8.0	8.0	9.0	3.6	3.6	3.5	6.0	6.0	3.5
H-4	5.05	4.08	4.06	3.81	5.96	5.93	6.05	4.22	4.05	4.50
$J_{4,5}$					1.0	0.8	0.8	2.0	1.5	1.0
H-5	4.28	4.21	4.29	4.26	4.06	4.29	4.72	3.95	4.05	3.58
	3.59	3.51	3.65	3.74						
H-6					3.57	4.41	4.31	4.15	4.42	4.30
					3.33	4.29	4.25	3.72	5.48 8.0 — 4.30 6.0 4.05 1.5 4.05	4.27

^a Chemical shifts (δ , in ppm) and coupling constants (J, in Hz) for solns in CDCl₃.

Scheme 2. Reagents and conditions: (a) TrCl, pyridine, 60 °C, 6 h; then PhCOCl, rt, 15 h; (b) BF₃·Et₂O, MeOH, CH₂Cl₂, rt, 30 min; then LevOH, DCC, DMAP, CH₂Cl₂, rt, 1 h; (c) CAN, toluene/MeCN/H₂O, rt, 20 min; then CCl₃CN, DBU, CH₂Cl₂, rt, 30 min; (d) 2,2-dimethoxypropane (neat), CSA, rt, 48 h; (e) PhCOCl, pyridine, 0 °C, 1 h; (f) 90% TFA, rt, 10 min; then DTBS ditriflate, *sym*-collidine, CH₂Cl₂, 0 °C, 90 min.

ditriflate¹⁷ and *sym*-collidine in dichloromethane to afford the acceptor **22** in 80% overall yield. The convenience of the 4,6-di-*tert*-butylsilylene acetal in oligosaccharide synthesis, compared to its 4,6-benzylidene congener, was recently highlighted.⁷

Preparation of the target disaccharide derivatives 3–6 was then achieved as follows (Scheme 3). Condensation of imidate 19 (1 equiv) with alcohol 13 (1 equiv) in dichloromethane, in the presence of trimethylsilyl triflate, followed by mild acid hydrolysis of the 2,3-isopropylidene acetal afforded the common intermediate 23 in 71% overall yield. Previous studies of our group on the regioselective acylation of 2,3-unsubstituted xylopeptide derivatives¹⁸ showed that major substitution could be achieved at O-3 through the tin procedure.¹⁹ Thus, treatment of the 2,3-dibutylstannylene acetal derived from 23 with acetic anhydride (1.05 equiv) gave the 3-acetate 24 in 71% overall yield, along with its regioisomer 25 (18%), the structures of which were easily deduced from their ¹H NMR spectra (Table 2). Phosphorylation of 24, as described for the preparation of 15, gave 26 in 91% yield, whose ¹H NMR data (Table 2) were in full agreement with the expected structure. This intermediate was later treated with hydrazine acetate in pyridine to give 27 (93% yield), a common intermediate that could be either directly deprotected or sulfonated at C-6 prior deprotection. Treatment of 27 with sulfur trioxide-trimethylamine complex in N.Ndimethylformamide followed by ion-exchange chromatography (Na⁺ resin) afforded the sodium salt 28 in 89% yield. Comparison of the ¹H NMR spectra of 27 and 28 (Table 2), recorded strictly under the same conditions, showed the expected²⁰ downfield shift $(\Delta\delta \sim 0.4-0.5 \text{ ppm})$ of the signals for Galp H-6a and H-6b in the 6-O-sulfonated species. Final deprotection of 27 and 28 was achieved through catalytic hydrogenation (Pd/C) followed by hydrazinolysis²¹ of the ester groups in methanol to give the target molecules 4 and 6 in 80% and 85% yields, respectively. The ¹H (Table 4) and ¹³C NMR data (Table 5) of **4** and **6** confirmed the expected structures, and showed the additional couplings $^{3}J_{H,P} = 9.0 \text{ Hz}$ and $^{2}J_{C,P} = 5.0 \text{ Hz}$ in the signals for Xylp H-2 and Xylp C-2, respectively. For the sulfoform 6, the expected downfield shifts $\Delta \delta \sim 0.4$ –0.5 ppm in ¹H and $\Delta\delta \sim 6$ ppm in ¹³C NMR data (Tables 4 and 5, respectively) were also observed. Conventional acetylation of 23 (or of minor isomer 25) followed by delevulinoylation with hydrazine acetate gave crystalline 29 in 90% overall yield. This later was either transesterified with methanolic sodium methoxide to give the crystalline target molecule 3 in 92% yield, or sulfated at C-6 as described for the preparation of 28 to give 30 (90% vield), which was, in turn, saponified with aqueous sodium hydroxide in methanol to give the crystalline sulfoform 5 in 90% yield. The ¹H (Table 4) and ¹³C NMR data (Table 5) of 3 and 5 were also in accord with the expected structure and showed the same features as those reported above for 4 and 6.

Preparation of the target molecules 7–10 was then achieved as follows (Scheme 4). Condensation of 2,3,4,6-tetra-O-benzoyl-1-O-trichloroacetimidoyl-α-Dgalactopyranose 31⁹ (1.25 equiv) with acceptor 22 (1 equiv) in dichloromethane, in the presence of trimethylsilyl triflate, gave 32 in 86% yield. Treatment of 32 with triethylamine-trihydrofluoride complex in tetrahydrofuran²² gave smoothly the crystalline diol 33 in 90% yield. Selective levulinovlation of 33 at O-6 with levulinic acid, 1,3-dicyclohexylcarbodiimide and 4-dimethylaminopyridine in dichloromethane followed by subsequent benzoylation at O-4 gave 34 in 85% overall yield. A small amount (\sim 5%) of the 4,6-dilevulinoylated derivative was easily removed by chromatography and recycled. Introduction of the trichloroacetimidoyl group at C-1 was then achieved as reported for the preparation of 19 to give 35 in 75% yield, the structure of which was deduced from its ¹H NMR spectrum (Table 2). Condensation of imidate 35 (1 equiv) with acceptor 13 (1.3 equiv),

Scheme 3. Reagents and conditions: (a) donor (1 equiv), TMSOTf, 4 Å mol. sieves, CH₂Cl₂, 0 °C, 30 min; then 60% AcOH, 100 °C, 15 min; (b) Bu₂SnO, dioxane/benzene, reflux, 6 h; then Ac₂O, rt, 2 h; (c) Ipr₂NP(OBn)₂, 1-*H*-tetrazole, CH₂Cl₂, rt, 30 min; then *m*-CPBA, -10 °C, 30 min; (d) hydrazine acetate, pyridine, rt, 8 min; (e) H₂, Pd–C, 24 h; then hydrazine hydrate, MeOH, rt, 5 h; (f) Me₃N·SO₃, DMF, 60 °C, 1 h; (g) Ac₂O, pyridine, rt, 4 h; (h) MeONa, MeOH/CH₂Cl₂, rt, 2 h; (i) 4 M NaOH, MeOH, rt, 4 h.

Table 2. ¹H NMR data: carbohydrate ring protons for disaccharide derivatives 23–30 and 32–35^a

	H-1 ^I	H-2 ^I	H-3 ^I	H-4 ^I	H-5 ^I	H-6 ^I	H-1 ^{II}	H-2 ^{II}	H-3 ^{II}	H-4 ^{II}	H-5 ^{II}	H-6 ^{II}
	$J_{1,2}$	$J_{2,3} \ J_{2,\mathrm{P}}$	$J_{3,4}$	$J_{4,5}$			$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$		
23	5.09	3.78	3.84	3.88	3.88, 3.45		4.92	5.79	5.59	5.89	4.35	4.34, 4.30
	6.5	8.5	8.5				8.0	10.5	3.5	1.0		
24	5.24	3.85	5.25	4.05	4.05, 3.55		4.92	5.76	5.63	5.88	4.20	4.37, 4.25
	6.0	7.0	7.0				8.0	10.5	3.5	0.8		
25	5.07	5.16	3.90	3.90	3.90, 3.45		4.94	5.79	5.58	5.88	4.34	4.38, 4.25
	7.5	9.0					8.0	10.5	3.5	0.8		
26	5.14	4.68	5.40	4.11	4.08, 3.45		4.91	5.70	5.53	5.86	4.25	4.28, 4.22
	7.5	9.0	9.0				8.0	10.5	3.5	0.8		
		9.0										
27 ^b	5.17	4.64	5.43	4.08	4.04, 3.45		4.93	5.77	5.56	5.84	4.05	3.85, 3.65
	7.0	8.5	8.5		ŕ		8.0	10.5	3.5	0.8		,
		9.0										
28 ^b	5.23	4.58	5.38	4.11	4.08, 3.51		5.05	5.64	5.58	5.92	4.43	4.27, 4.17
	7.0	8.5	9.0				8.0	10.5	3.5	0.8		
		9.0										
29 ^b	5.31	5.09	5.43	3.96	4.07, 3.53		4.95	5.82	5.56	5.83	4.08	3.83, 3.67
	5.5	7.0	7.0				8.0	10.5	3.5	0.8		
$30^{\rm b}$	5.21	5.11	5.29	4.10	4.08, 3.51		5.05	5.67	5.58	5.92	4.43	4.21, 4.18
	7.0	8.5	8.5				8.0	10.5	3.5	1.0		
32	5.13	5.76	3.94	4.85	3.38	4.20, 4.08	4.87	5.83	5.48	5.94	4.31	4.66, 4.36
	8.0	10.5	3.5	0.8			8.0	10.5	3.5	0.8		
33	4.89	5.80	4.01	4.24	3.66	3.98, 3.88	5.03	5.72	5.54	5.95	4.39	4.64, 4.53
	8.0	10.5	3.5	1.0		*	8.0	10.5	3.5	0.8		ĺ
34	5.0	5.81	4.28	5.87	4.08	4.34, 4.22	5.02	5.58	5.40	5.95	4.30	4.76, 4.72
	8.0	10.5	3.5	0.8		,	8.0	10.0	3.5	1.0		,
35	6.70	5.71	4.60	5.92	4.38	4.31, 4.16	5.04	5.59	5.46	6.08	4.51	4.78, 4.71
	3.5	10.5	3.5	0.8			8.0	10.0	3.5	1.0		

^a For solns in CDCl₃, unless otherwise stated.

^b 3:1 CD₃OD-CDCl₃.

Scheme 4. Reagents and conditions: (a) **31** (1.25 equiv), TMSOTf, 4 Å mol. sieves, CH₂Cl₂, rt, 30 min; (b) Et₃N·3HF, THF, 0 °C, 2 h; (c) LevOH, DCC, DMAP, CH₂Cl₂, rt, 2 h; then PhCOCl, pyridine, rt, 16 h; (d) CAN, toluene/MeCN/water, rt, 20 min; then CCl₃CN, DBU, CH₂Cl₂, rt, 30 min; (e) **13** (1.3 equiv), TMSOTf, 4 Å mol. sieves, 0 °C, 30 min; then 60% AcOH, 100 °C, 15 min; (f) Bu₂SnO, dioxane/benzene, reflux, 6 h; then Ac₂O, rt, 4 h; (g) Ipr₂NP(OBn)₂, 1-*H*-tetrazole, CH₂Cl₂, rt, 30 min; then *m*-CPBA, -10 °C, 20 min; (h) hydrazine acetate, pyridine, rt, 10 min; (i) H₂, Pd/C, 24 h; then hydrazine hydrate, MeOH, rt, 6 h; (j) Me₃N·SO₃, DMF, 60 °C, 1 h; (k) Ac₂O, pyridine, rt, 15 h; then hydrazine acetate, pyridine, rt, 10 min; (l) MeONa, MeOH/CH₂Cl₂, rt, 2 h; (m) 4 M NaOH, MeOH, rt, 3 h.

followed by mild acid hydrolysis, as reported for the preparation of 23, gave the common intermediate 36 in 74% overall yield. Access to target molecules was then achieved using a route similar to those reported above for the disaccharide derivatives 3–6. Tin-mediated regioselective acetylation of 36, as reported above, gave predominantly the 3-acetate 37 (69%) along with its 2isomer 38 (16%). Phosphorylation of 37 gave 39 in 89% yield, which was delevulinoylated to afford 40 in 92% yield. The ¹H NMR data (Table 3) of 39 and 40 were in agreement with the expected structures and showed the additional ${}^2J_{H,P}$ couplings. Sulfation of 40 gave 41 in 90% yield, whose ¹H NMR spectrum (Table 3) showed the expected downfield shift ($\Delta \delta \sim 0.4$ –0.5 ppm) for the signals of H-6a and H-6b in the sulfated species. Final deprotection of 40 and 41, as reported for the preparation of 4 and 6, gave the target molecules 8 and 10 in 88% and 78% yields, respectively. The ¹H (Table 4) and ¹³C NMR data (Table 5) for 8 and 10 were in accord with the expected structures and showed the same relevant downfield shifts and additional couplings. Acetylation of 36 (or 38) followed by delevulinovlation gave 42 in 90% overall yield. This later was either transesterified to give the crystalline target molecule 7 in 91% yield, or sulfated at C-6, as reported above, to give 43 in 91% yield, which was in turn saponified to afford the target molecule 9 in 84% yield. The ¹H (Table 4) and ¹³C NMR data (Table 5) for 7 and 9 agreed with the expected structures, and also showed the relevant downfield shifts characteristic of sulfation at Galp C-6 in the sulfated species. Target molecules 1-10 were submitted to tandem mass spectrometry in the negative-ion mode²³ (ESIMS), which confirmed the structures of these anionic molecules and allowed their structural verification.

In conclusion, we have reported a stereocontrolled and high-yielding divergent preparation of a set of sulfoforms

Table 3. ¹H NMR data: carbohydrate ring protons for trisaccharide derivatives 36-43^a

	36	37	38	39	40 ^b	41 ^b	42 ^b	43 ^b
H-1 ^I	4.99	5.06	4.98	5.06	5.08	5.15	5.17	5.05
$J_{1,2}$	6.5	7.0	6.5	7.0	7.0	7.0	6.5	6.5
H-2 ^I	3.66	3.90	5.08	4.61	4.56	4.52	5.02	5.03
$J_{2,3}$	8.0	8.5	9.0	9.0	8.5	8.5	8.0	8.0
$J_{2,\mathrm{P}}$	_	_	_	9.0	9.0	9.0	_	_
H-3 ^I	3.71	5.05	3.75	5.29	5.29	5.28	5.26	5.19
$J_{3,4}$	8.0	8.0	8.0	9.0	8.5	8.5	8.0	8.0
H-4 ^I	4.12	4.18	4.10	4.17	4.18	4.04	4.21	4.22
H-5 ^I	4.01	3.96	3.90	4.02	3.92	3.88	3.86	3.90
	3.31	3.41	3.30	3.31	3.27	3.38	3.35	3.39
H-1 ^{II}	4.66	4.69	4.67	4.68	4.67	4.77	4.71	4.81
$J_{1,2}$	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
H-2 ^{II}	5.58	5.58	5.61	5.56	5.58	5.51	5.61	5.52
$J_{2,3}$	10.5	10.5	10.5	10.5	10.0	10.5	10.5	10.5
H-3 ^{II}	4.07	4.36	4.22	4.28	4.22	4.24	4.21	4.22
$J_{3,4}$	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
H-4 ^{II}	5.84	5.88	5.86	5.86	5.80	5.84	5.81	5.84
$J_{4,5}$	0.8	0.8	0.8	0.8	0.8	1.0	0.8	1.0
H-5 ^{II}	4.05	3.99	4.08	3.97	3.84	3.88	3.86	3.95
$H-6^{II}$	4.28	4.30	4.30	4.24	3.74	4.22	3.72	4.24
	4.15	4.22	4.21	4.16	3.57	3.96	3.59	3.92
$H-1^{III}$	4.84	5.02	4.96	4.95	4.96	5.08	4.98	5.10
$J_{1,2}$	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
H-2 ^{III}	5.54	5.56	5.56	5.51	5.56	5.50	5.58	5.54
$J_{2,3}$	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0
H-3 ^{III}	5.38	5.40	5.41	5.38	5.40	5.43	5.41	5.47
$J_{3,4}$	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
H-4 ^{III}	5.86	5.91	5.88	5.90	5.84	5.91	5.84	5.92
$J_{4,5}$	0.8	0.8	0.8	1.0	1.0	0.8	0.8	0.8
H-5 ^{III}	4.20	4.22	4.27	4.25	4.25	4.31	4.26	4.31
H-6 ^{III}	4.68	4.76	4.71	4.74	4.64	4.68	4.64	4.66
	4.44	4.35	4.45	4.30	4.28	4.34	4.27	4.35

^a For solns in CDCl₃, unless otherwise stated.

and phosphoforms of oligosaccharide derivatives from the linkage region of proteoglycans. These molecules, each obtained in 100–200 mg amounts, will be useful in assessing the possible role of these unique substituents in the biosynthesis of PGs. Compounds 3–6 will be precious tools to study the substrate specificity of GalT-2, and 7–10 will serve not only to characterize unambiguously the transfer products, but also as potential substrates for GlcAT-1. All these molecules are currently being evaluated in biological assays, and the results of these studies will be reported elsewhere in due course.

3. Experimental

3.1. General methods

Melting points were determined in capillary tubes with a Büchi apparatus and are uncorrected. Optical rotations are measured at 20–25 °C with a Perkin–Elmer 341 polarimeter. ¹H and ¹³C NMR spectra were recorded at 25 °C with a Bruker DPX-250 spectrometer operating

at 250 and 62.8 MHz, respectively, with Me₄Si as internal standard, unless otherwise stated. Assignments were based on homo- and heteronuclear correlations using the supplier's software. ³¹P NMR spectra were recorded with a Bruker DPX 400 spectrometer operating at 162 MHz. Mass spectra were obtained on a Perkin–Elmer SCIEX API 300 spectrometer operating in the ion-spray (IS) mode or on a Micromass Quattro Ultima triple quadrupole spectrometer equipped with a Z-spray electrospray ionization source (ESIMS) operating in the negative mode. Flash-column chromatography was performed on Silica gel (E. Merck, 40–63 µm). Elemental analyses were performed by the Service Central de Microanalyse du CNRS (Vernaison, France).

3.2. 7-Methoxy-2-naphthyl 2,3,4-tri-*O*-acetyl-β-D-xylopyranoside (12)

A mixture of 1,2,3,4-tetra-*O*-acetyl-β-D-xylopyranose 11¹² (6.36 g, 20 mmol), 7-methoxy-2-naphtol (6.27 g, 36 mmol), and 4 Å powdered molecular sieves (2.0 g) in anhyd CH₂Cl₂ (80 mL) was stirred for 30 min under

^b 3:1 CD₃OD-CDCl₃.

Table 4. ¹H NMR data: carbohydrate ring protons for target molecules 1–10^a

	1 ^b	2	3 ^b	4	5	6	7 ^b	8	9	10
H-1 ^I	4.95	5.23	5.03	5.23	5.04	5.24	5.02	5.23	5.04	5.25
$J_{1,2}$	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
H-2 ^I	3.24	3.98°	3.30	4.04	3.51	4.05	3.28	4.08	3.52	4.05
$J_{2,3}$	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
$J_{2,\mathrm{P}}$	_	9.0	_	9.0	_	9.0	_	9.0	_	9.0
H-3 ^I	3.35	3.74	3.38	3.84	3.63	3.86	3.36	3.85	3.64	3.87
$J_{3,4}$	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
H-4 ^I	3.36	3.69	3.63	3.92	3.80	3.95	3.62	3.95	3.80	3.95
H-5 ^I	3.78	3.96	3.96	4.10	4.05	4.08	3.92	4.10	4.08	4.10
	3.26	3.45	3.35	3.55	3.46	3.56	3.38	3.58	3.55	3.58
H-1 ^{II}			4.24	4.39	4.32	4.44	4.24	4.44	4.31	4.51
$J_{1,2}$			8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
H-2 ^{II}			3.40	3.44	3.44	3.48	3.41	3.50	3.48	3.53
$J_{2,3}$			10.5	10.0	10.0	10.0	10.0	10.0	10.5	10.0
H-3 ^{II}			3.29	3.54	3.53	3.58	3.56	3.74	3.75	3.72
$J_{3,4}$			3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
H-4 ^{II}			3.61	3.82	3.86	4.14	3.65	4.07	4.06	4.12
$J_{4,5}$			0.8	0.8	1.0	1.0	1.0	0.8	0.8	0.8
H-5 ^{II}			3.50	3.60	3.76	3.82	3.55	3.80	3.81	3.81
$H-6^{II}$			3.48	3.75	4.12	4.14	3.58	3.71	4.13	4.14
			3.42	3.61	4.10	4.11	3.43	3.60	4.09	4.10
H-1 ^{III}							4.31	4.47	4.37	4.49
$J_{1,2}$							8.0	8.0	8.0	8.0
H-2 ^{III}							3.38	3.52	3.44	3.56
$J_{2,3}$							10.0	10.0	10.5	10.5
H-3 ^{III}							3.27	3.60	3.60	3.58
$J_{3,4}$							3.5	3.5	3.5	3.5
H-4 ^{III}							3.68	3.81	3.82	3.84
$J_{4,5}$							1.0	0.8	1.0	1.0
H-5 ^{III}							3.51	3.69	3.66	3.68
H-6 ^{III}							3.52	3.71	3.72	3.74
							3.43	3.60	3.61	3.62

^a For solns in D₂O at 25 °C (internal acetone, $\delta_{\rm H}$ 2.225), unless otherwise stated.

dry Ar, then cooled to 0 °C. A soln of Me₃SiOTf in toluene (1 M, 4 mL) was added, and the mixture was stirred for 2 h at 0 °C. Triethylamine (1 mL) was added, and the mixture was filtered, washed with cold water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. The residue was stirred with diethyl ether (100 mL) at 0 °C the solids were filtered off, and recrystallized from EtOH to give **12** (6.66 g, 77%), mp 154–155 °C; [α]_D²² –24 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 7.60–6.90 (m, 6H, aromatic H), 3.42 (s, 3H, OCH₃), 1.84, 1.82, 1.70 (3s, 9H, Ac); ISMS: m/z 455 [M+Na]⁺. Anal. Calcd for C₂₂H₂₄O₉: C, 61.11; H, 5.59. Found: C, 61.01; H, 6.05.

3.3. 7-Methoxy-2-naphthyl β-D-xylopyranoside (1)

A solution of **12** (4.33 g, 10 mmol) in MeOH (30 mL) and CH_2Cl_2 (10 mL) was treated for 1 h with methanolic sodium methoxide (1 M, 1 mL), then was deionized with Amberlite IR-120 [H⁺] resin, filtered and concentrated. Crystallization of the residue from EtOH gave **1**

(2.88 g, 94%); mp 176–177 °C; $[\alpha]_D^{22}$ –30 (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, 1:1, (CD₃)₂SO/D₂O): carbohydrate ring protons (see Table 4); δ 7.80–7.0 (m, 6H aromatic H), 3.84 (s, 3H, OCH₃); ¹³C NMR (62.8 MHz, 1:1, (CD₃)₂SO/D₂O): see Table 5; ISMS: m/z 329 [M+Na]⁺. Anal. Calcd for C₁₆H₁₈O₆: C, 62.74; H, 5.92. Found: C, 62.64; H, 5.97.

3.4. 7-Methoxy-2-naphthyl 2,3-*O*-isopropylidene- (13) and 3,4-*O*-isopropylidene-β-D-xylopyranoside (14)

2-Methoxypropene (0.8 mL, 8 mmol) was added in four portions, every 20 min, to a solution of **1** (920 mg, 3 mmol) and CSA (100 mg) in anhyd DMF (10 mL). Triethylamine (0.3 mL) was added, and the mixture was concentrated. Flash silica chromatography (4:3, petroleum ether/EtOAc, containing 0.2% of Et₃N) gave first **14** (239 mg, 23%); mp 183–184 °C; $[\alpha]_D^{22}$ –51 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 7.75–7.05 (m, 6H, aromatic H), 3.92 (s, 3H, OC H_3), 2.70 (d, 1H, J = 3.0 Hz, H_3)–1.52, 1.50 (2s, 6H, H_3)–2. ISMS: H_3 369 [M+Na]⁺.

^b 1:1, (CD₃)₂SO/D₂O.

^cValues in bold type reflect the location of phosphate and/or sulfate groups.

Table 5. ¹³C NMR data (62.8 MHz) for target molecules 1–10^a

	1^{b}	2	3^{b}	4	5	6	7 ^b	8	9	10
C-1 ^I	100.77	100.02	100.54	100.01	100.80	100.04	100.85	100.24	100.90	100.12
C-2 ^I	72.90	75.30°	72.93	75.58	72.93	75.64	72.88	75.46	72.55	75.56
$J_{ m C,P}$	_	5.0	_	5.0	_	5.0	_	5.0	_	5.0
C-3 ^I	76.50	75.80	74.36	74.11	74.02	74.03	74.26	74.29	74.10	74.28
C-4 ^I	69.17	69.10	75.90	75.94	77.17	75.57	76.01	75.89	77.30	75.49
C-5 ^I	65.60	64.79	63.41	62.74	63.20	62.70	63.29	62.80	63.20	62.72
C-1 ^{II}			102.12	101.72	102.11	101.21	100.49	101.37	101.80	100.86
C-2 ^{II}			69.66	70.80	70.68	70.59	68.91	69.93	69.69	69.68
C-3 ^{II}			72.71	72.86	72.83	72.91	82.65	82.39	82.91	82.13
C-4 ^{II}			67.97	68.96	68.48	68.46	67.29	68.68	68.11	68.18
C-5 ^{II}			75.38	75.43	74.10	74.03	75.10	75.20	74.01	72.69
$C-6^{II}$			60.28	61.37	67.31	67.05	60.17	61.31	67.28	67.09
C-1 ^{III}							104.87	104.51	104.50	104.52
C-2 ^{III}							70.99	71.21	71.19	71.28
C-3 ^{III}							72.69	72.70	72.75	72.62
C-4 ^{III}							67.86	68.77	68.75	68.74
C-5 ^{III}							75.06	75.20	75.18	75.20
C-6 ^{III}							60.52	61.11	61.04	61.05
Ar_{C}	157.49	157.56	157.50	157.62	157.57	157.62	157.43	157.63	157.65	157.63
	155.35	155.15	155.28	155.21	155.31	155.28	155.27	155.33	155.21	155.28
	135.24	135.48	135.24	135.49	135.48	135.51	135.19	135.50	135.48	135.51
	128.80	129.71	128.79	129.82	129.88	129.86	128.78	129.86	129.88	129.88
	128.70	129.52	128.68	129.58	129.58	129.56	128.65	129.62	129.58	129.52
	124.22	126.51	124.25	126.10	126.14	126.08	124.21	126.10	126.08	126.10
	116.30	126.17	116.31	125.52	125.40	125.62	116.31	125.91	125.82	125.72
	115.90	116.87	115.89	116.78	116.82	116.92	115.87	116.96	116.98	116.97
	109.36	110.90	109.42	110.81	110.61	110.73	109.37	110.89	110.56	110.68
	105.16	105.98	105.16	105.94	105.98	106.02	105.14	106.07	105.96	106.06
OCH_3	54.89	55.52	54.89	55.53	55.53	55.52	54.89	55.53	55.52	55.54

^a For solns in D₂O at 25 °C (internal acetone, δ_C 30.45), unless otherwise stated.

Anal. Calcd for $C_{19}H_{22}O_6$: C, 65.88; H, 6.40. Found: C, 65.72; H, 6.45.

Next eluted was **13** (717 mg, 69%); mp 137–138 °C; $[\alpha]_D^{22}$ –41 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 7.70–7.0 (m, 6H, aromatic H), 3.92 (s, 3H, OC H_3), 2.43 (d, 1H, J=4.0 Hz, HO-4), 1.54, 1.52 (2s, 6H, (C H_3)₂C); ISMS: m/z 369 [M+Na]⁺. Anal. Calcd for C₁₉H₂₂O₆: C, 65.88; H, 6.40. Found: C, 65.78; H, 6.51.

3.5. 7-Methoxy-2-naphthyl 2-*O*-dibenzyloxyphosphinyl-3,4-*O*-isopropylidene-β-D-xylopyranoside (15)

A solution of dibenzyl *N*,*N*-diisopropylphosphoramidite (245 mg, 0.7 mmol) in anhyd CH₂Cl₂ (1 mL) was added to a solution of **14** (160 mg, 0.46 mmol) and 1-*H*-tetrazole (0.4 M in MeCN, 2.5 mL) in anhyd CH₂Cl₂ (1 mL), and the mixture was stirred for 1 h, then was cooled to -10 °C. *m*-Chloroperbenzoic acid (225 mg, 1 mmol) was added in portions, and the mixture was stirred for 30 min, then was diluted with CH₂Cl₂ (30 mL), washed with aq 5% Na₂S₂O₃, satd aq NaH-CO₃, and water, dried (MgSO₄), and concentrated. Flash silica chromatography (3:2, petroleum ether/

EtOAc) and crystallization of the residue from diethyl ether gave **15** (244 mg, 87%); mp 106–107 °C; $[\alpha]_D^{22}$ –15 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 7.70–7.0 (m, 16H, aromatic H), 5.14, 5.07 (2ABq, 4H, OC H_2 Ph), 3.90 (s, 3H, OC H_3), 1.47, 1.43 (2s, 6H, (C H_3)₂C); ISMS: m/z 629 [M+Na]⁺. Anal. Calcd for C₃₃H₃₅O₉P: C, 65.34; H, 5.81; P, 5.10. Found: C, 65.21; H, 5.92; P, 4.98.

3.6. 7-Methoxy-2-naphthyl 2-*O*-disodium phosphonato-β-D-xylopyranoside (2)

A mixture of **15** (200 mg, 0.33 mmol), Pd/C (10%, 100 mg) and AcOH (0.1 mL) in EtOAc/MeOH/H₂O (6:2:1, 9 mL) was stirred under H₂ for 24 h, then was filtered through a pad of Celite and concentrated. A suspension of the residue in water (5 mL) was treated with NaOH (1 M, 0.66 mL), concentrated, and eluted from a column (2 × 60 cm) of Sephadex LH-20 with water to give **2** (108 mg, 80%) as a white powder; $[\alpha]_D^{22} - 17$ (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.75–6.95 (m, 6H, aromatic H), 3.81 (s, 3H, OC H_3); ¹³C NMR (62.8 MHz, D₂O, internal acetone): see Table 5; ESIMS:

^b 1:1, (CD₃)₂SO/D₂O.

^c Values in bold type reflect the location of phosphate and/or sulfate groups.

m/z 385.1 [M-2Na+H]⁻. Anal. Calcd for C₁₆H₁₇-NaO₉P: C, 44.66; H, 3.98. Found: C, 44.38; H, 4.07.

3.7. 4-Methoxyphenyl 2,3,4-tri-*O*-benzoyl-6-*O*-trityl-β-D-galactopyranoside (17)

A mixture of 4-methoxyphenyl β-p-galactopyranoside 16¹⁴ (2.86 g, 10 mmol) and freshly recrystallized trityl chloride (1.95 g, 7 mmol) in anhyd pyridine (50 mL) was stirred for 6 h at 60 °C, then was cooled to rt. Benzoyl chloride (6.65 mL, 40 mmol) was added, and the mixture was stirred overnight. Methanol (5 mL) was added, and the mixture was diluted with CH₂Cl₂ (150 mL), washed with water, satd ag NaHCO₃, and water, dried (MgSO₄), and concentrated. Crystallization of the residue from EtOAc/petroleum ether gave 17 (7.58 g, 90%); mp 212–213 °C; $[\alpha]_D^{22}$ +98 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 8.0–6.80 (m, 34H, aromatic H), 3.75 (s, 3H, OC H_3); ISMS: m/z 864 [M+Na]⁺. Anal. Calcd for C₅₃H₄₄O₁₀: C, 75.70; H, 5.27. Found: C, 75.55; H, 5.34.

3.8. 4-Methoxyphenyl 2,3,4-tri-*O*-benzoyl-6-*O*-levulinoyl-β-D-galactopyranoside (18)

A soln of 17 (3.36 g, 4 mmol) in anhyd CH₂Cl₂ (50 mL) was treated successively with BF₃·Et₂O (0.56 mL, 4.4 mmol) and anhyd MeOH (1.76 mL, 44 mmol) and the mixture was stirred for 30 min at rt, then was diluted with CH₂Cl₂ (50 mL), washed with water, satd aq NaH-CO₃, and water, dried (MgSO₄), and concentrated. A mixture of the residue, levulinic acid (0.51 g, 4.4 mmol) and DMAP (61 mg, 0.5 mmol) in anhyd CH₂Cl₂ (25 mL) was treated in portions with DCC (0.9 g, 4.4 mmol), and the mixture was stirred for 1 h at rt. The precipitated DCU was filtered off, washed with CH₂Cl₂, and the filtrate was washed with cold 0.1 M HCl, water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. Flash silica chromatography of the residue (1:1, EtOAc/petroleum ether) gave **18** (2.33 g, 93%) as a colorless glass; $[\alpha]_D^{22} + 142$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 8.10–6.80 (m, 19H, aromatic H), 3.76 (s, 3H, OCH₃), 2.74, 2.60 (2m, 4H, CH_2CO), 2.15 (s, 3H, $COCH_3$); ISMS: m/z 719 $[M+Na]^+$. Anal. Calcd for $C_{39}H_{36}O_{12}$: C, 67.23; H, 5.21. Found: C, 67.12; H, 5.35.

3.9. 2,3,4-Tri-*O*-benzoyl-6-*O*-levulinoyl-1-*O*-trichloro-acetimidoyl-α-D-galactopyranoside (19)

A mixture of **18** (2.44 g, 3.5 mmol) and CAN (9.6 g, 17.5 mmol) in 1:1.5:1 toluene/MeCN/H₂O (70 mL) was stirred for 20 min at rt, then was diluted with EtOAc (150 mL), washed with water, brine, and water, dried

(MgSO₄), and concentrated. Flash silica chromatography (1:1, EtOAc/petroleum ether) gave the corresponding free hemiacetal as a yellow foam. A mixture of the above isolated hemiacetal, CCl₃CN (3 mL, 30 mmol), and DBU (0.11 mL, 0.72 mmol) in CH₂Cl₂ (15 mL) was stirred for 30 min at rt, then was concentrated. Flash silica chromatography (3:2, petroleum ether/EtOAc, containing 0.1% of Et₃N) gave **19** (1.78 g, 78%) as a white foam; $[\alpha]_D^{22} + 167$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 8.64 (s, 1H, C=NH), 8.10–7.20 (m, 15H, Ph), 2.70, 2.52 (2m, 4H, CH₂CO), 2.12 (s, 3H, COCH₃); ISMS: m/z 745 [M+Na]⁺ for ³⁵Cl. Anal. Calcd for C₃₃H₃₀Cl₃NO₁₁: C, 54.82; H, 4.18; N, 1.94. Found: C, 54.68; H, 4.27; N, 1.81.

3.10. 4-Methoxyphenyl 3,4-*O*-isopropylidene-6-*O*-(2-methoxy-2-propyl)-β-D-galactopyranoside (20)

A mixture of **16** (5.0 g, 17.5 mmol) and CSA (0.2 g) in 2,2-dimethoxypropane (80 mL) was stirred for 48 h at rt. Triethylamine (1.4 mL) was added, and the mixture was concentrated. Flash silica chromatography (12:1, CH₂Cl₂/acetone, containing 1% of Et₃N) gave 20 (5.23 g, 75%); mp 107-108 °C (from EtOAc/petroleum ether); $[\alpha]_D^{22} - 29$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 6.95 (m, 4H, aromatic H), 3.78, 3.18 (2s, 6H, OCH₃), 2.54 (d, 1H, J 2.5 Hz, HO-2), 1.60, 1.42, 1.40 (3s, 12H, $(CH_3)_2C$); ISMS: m/z 421 $[M+Na]^+$. Anal. Calcd for C₂₀H₃₀O₈: C, 60.29; H, 7.59. Found: C, 60.12; H, 7.65. Further elution with 5:1, CH₂Cl₂/acetone gave the corresponding 2,6-diol (1.15 g, 20%); mp 133-134 °C (from EtOAc/petroleum ether). This later was treated and purified as described above to give a second crop of **20** (1.05 g, 15%), raising the overall yield to 90%.

3.11. 4-Methoxyphenyl 2-*O*-benzoyl-3,4-*O*-isopropylidene-6-*O*-(2-methoxy-2-propyl)-β-D-galactopyranoside (21)

Benzoyl chloride (2.32 mL, 20 mmol) was added dropwise at 0 °C to a solution of **20** (5.08 g, 12.75 mmol) in anhyd pyridine (10 mL) and CH₂Cl₂ (30 mL), and the mixture was stirred at 0 °C for 1 h. Methanol (1 mL) was added, and the mixture was diluted with CH₂Cl₂ (100 mL), washed with cold water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. Crystallization of the residue from EtOAc/petroleum ether gave **21** (6.05 g, 94%); mp 95–96 °C; $[\alpha]_D^{22}$ +10 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 8.10–6.80 (m, 9H, aromatic H), 3.73, 3.22 (2s, 6H, OCH₃), 1.66, 1.40, 1.38 (3s, 12H, (CH₃)₂C); ISMS: m/z 525 [M+Na]⁺. Anal. Calcd for C₂₇H₃₄O₉: C, 64.53; H, 6.82. Found: C, 64.40; H, 6.90.

3.12. 4-Methoxyphenyl 2-*O*-benzoyl-4,6-*O*-di-*tert*-butyl-silylene-β-D-galactopyranoside (22)

A soln of **21** (6.0 g, 11.9 mmol) in 9:1, TFA/ H_2O (20 mL) was stirred for 10 min at rt, then was diluted with water (20 mL), concentrated, and evaporated twice with water (10 mL). Crystallization of the residue from EtOH gave the intermediary triol (4.24 g, 91%); mp 176–177 °C.

Di-*tert*-butylsilyl ditriflate (4.4 mL, 13 mmol) was added at 0 °C to a suspension of the above isolated triol and *sym*-collidine (4.0 mL, 30 mmol) in anhyd CH₂Cl₂ (40 mL), and the mixture was stirred for 90 min at 0 °C. The clear solution was washed with water, cold 5% HCl, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. Flash silica chromatography (5:2, petroleum ether/EtOAc) gave **22** (5.06 g, 80% from **21**) as a white foam; $[\alpha]_D^{22} + 4$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 1); δ 8.10–6.80 (m, 9H aromatic H), 3.75 (s, 3H, OCH₃), 2.77 (d, 1H, J = 10.0 Hz, HO-3), 1.16, 1.06 (2s, 18H, (CH₃)₃C); ISMS: m/z 553 [M+Na]⁺. Anal. Calcd for C₂₈H₃₈O₈Si: C, 63.37; H, 7.22. Found: C, 63.21; H, 7.30.

3.13. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)- β -D-xylopyranoside (23)

A mixture of imidate 19 (1.74 g, 2.4 mmol), alcohol 13 (0.83 g, 2.4 mmol), and powdered 4 Å molecular sieves (0.5 g) in anhyd CH₂Cl₂ (40 mL) was stirred at 0 °C under dry Ar. A solution of Me₃SiOTf in toluene (1 M, 0.36 mL) was added, and the mixture was stirred for 30 min at 0 °C. Triethylamine (0.5 mL) was added, and the mixture was filtered, washed with satd aq NaH-CO₃, and water, dried (MgSO₄), and concentrated. A soln of the residue in 60% AcOH (30 mL) was stirred at 100 °C for 15 min, then was cooled, concentrated, and evaporated twice with water. Flash silica chromatography (7:1, CH₂Cl₂/acetone) gave **23** (1.50 g, 71%) as a white foam; $[\alpha]_D^{22} + 80$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–7.0 (m, 21H, aromatic H), 4.05 (br s, 1H, Xylp HO-3), 3.03 (br s, 1H, Xylp HO-2), 2.75, 2.60 (2m, 4H, CH₂CO), 2.15 (s, 3H, COCH₃); ISMS: m/z 901 [M+Na]⁺. Anal. Calcd for C₄₈H₄₆O₁₆: C, 65.60; H, 5.27. Found: C, 65.48; H, 5.31.

3.14. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O- (24) and 2-O-acetyl- β -D-xylopyranoside (25)

A mixture of **23** (1.40 g, 1.6 mmol) and dibutyltin oxide (0.44 g, 1.76 mmol) in 1,4-dioxane (40 mL) and benzene (20 mL) was heated for 6 h under reflux with azeotropic

removal of water. Solvents (40 mL) were then slowly distilled at atmospheric pressure, and the mixture was cooled to rt. A soln of Ac₂O (175 μ L, 1.84 mmol) in benzene (1 mL) was added, and the mixture was stirred overnight, then was concentrated. Flash silica chromatography (3:2, toluene/EtOAc) gave first the 2-acetate **25** (266 mg, 18%) as a white foam; [α]_D²² +95 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–7.0 (m, 21H, aromatic H), 4.15 (d, 1H, J = 2.5 Hz, Xylp HO-3), 3.91 (s, 3H, OCH₃), 2.75, 2.60 (2m, 4H, CH₂CO), 2.20, 2.12 (2s, 6H, COCH₃); ISMS: m/z 943 [M+Na]⁺. Anal. Calcd for C₅₀H₄₈O₁₇: C, 65.21; H, 5.25. Found: C, 64.98; H, 5.21.

Next eluted was the 3-acetate **24** (1.05 g, 71%) isolated as a white foam; $[\alpha]_D^{22} + 38$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–6.90 (m, 21H, aromatic H), 3.24 (d, 1H, J = 8.5 Hz, Xylp HO = 2), 3.91 (s, 3H, OC H_3), 2.74, 2.58 (2m, 4H, C H_2 CO), 2.16, 2.14 (2s, 6H, COC H_3); ESIMS: m/z 943 [M+Na]⁺. Anal. Calcd for C₅₀H₄₈O₁₇: C, 65.21; H, 5.25. Found: C, 65.12; H, 5.29.

3.15. 7-Methoxy-2-naphthyl *O*-(2,3,4-tri-*O*-benzoyl-6-*O*-levulinoyl-β-D-galactopyranosyl)-(1→3)-3-*O*-acetyl-2-*O*-dibenzyloxyphosphinyl-β-D-xylopyranoside (26)

Compound **24** (617 mg, 0.67 mmol) was treated as described for the preparation of **15**. Flash silica chromatography (2:1, toluene/EtOAc) gave **26** (724 mg, 91%) as a white foam; $[\alpha]_D^{22} + 70$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–6.90 (m, 31H, aromatic H), 5.02 (2 ABq, 4H, C H_2 Ph), 3.88 (s, 3H, OC H_3), 2.75, 2.58 (2m, 4H, C H_2 CO), 2.16, 1.95 (2s, 6H, COC H_3). Anal. Calcd for C₆₄H₆₁O₂₀P: C, 65.08; H, 5.20; P, 2.62. Found: C, 65.01; H, 5.31; P, 2.41.

3.16. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O-acetyl-2-O-dibenzyloxy-phosphinyl- β -D-xylopyranoside (27)

A soln of **26** (0.69 g, 0.58 mmol) in pyridine (2 mL) was treated for 8 min at rt with 12:8:1 pyridine/AcOH/hydrazine hydrate (21 mL), then was diluted with CH₂Cl₂ (50 mL), washed with water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. Flash silica chromatography (3:2, toluene/EtOAc) gave **27** (0.59 g, 93%) as a white foam; $[\alpha]_D^{22} + 89$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 2); δ 8.05–6.95 (m, 31H, aromatic H), 5.04 (2ABq, 4H, CH₂Ph), 3.87 (s, 3H, OCH₃), 1.98 (s, 3H, COCH₃). Anal. Calcd for C₅₉H₅₅O₁₈P: C, 65.43; H, 5.12; P, 2.86. Found: C, 65.25; H, 5.18; P, 2.64.

3.17. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl-6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O-acetyl-2-O-dibenzyloxyphosphinyl- β -D-xylopyranoside (28)

A mixture of **27** (300 mg, 0.28 mmol) and sulfur trioxide–trimethylamine complex (66 mg, 0.5 mmol) in anhyd DMF (3 mL) was stirred for 1 h at 60 °C, then was cooled. Methanol (0.5 mL) was added, and the mixture was concentrated. Flash silica chromatography of the residue (15:1, CH₂Cl₂/MeOH, containing 0.5% of Et₃N) followed by elution from a column (1.5 × 25 cm) of Sephadex SP-C25 [Na⁺] with 9:1, CH₂Cl₂/MeOH gave **28** (370 mg, 89%) as a colorless glass; [α]_D²² +70 (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 2); δ 8.0–6.90 (m, 31H, aromatic H), 4.99 (2ABq, 4H, CH₂Ph), 3.85 (s, 3H, OCH₃), 1.96 (s, 3H, COCH₃). Anal. Calcd for C₅₉H₅₄-O₂₁NaPS: C, 59.80; H, 4.59. Found: C, 59.65; H, 5.12

3.18. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-2,3-di-O-acetyl- β -D-xylo-pyranoside (29)

Conventional acetylation (pyridine/acetic anhydride) of **23** (0.88 g, 1 mmol) gave quantitatively the corresponding diacetate. This later was treated as described for the preparation of **27** and the residue was crystallized from EtOAc/petroleum ether to give **29** (0.78 g, 90%); mp 115–116 °C; $[\alpha]_D^{22}$ +101 (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–6.90 (m, 21H, aromatic H), 3.89 (s, 3H, OC*H*₃), 2.92 (t, 1H, J = 6.5 Hz, Galp HO-6), 2.10, 2.08 (2s, 6H, COC*H*₃); ISMS: m/z 887 [M+Na]⁺. Anal. Calcd for C₄₇H₄₄O₁₆: C, 65.27; H, 5.13. Found: C, 65.21; H, 5.20.

3.19. 7-Methoxy-2-naphthyl O-(2,3,4-tri-O-benzoyl-6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-2,3-di-O-acetyl- β -D-xylopyranoside (30)

Compound **29** (0.39 g, 0.45 mmol) was treated as described for the preparation of **28** to give **30** (0.39 g, 90%) as a white foam; $[\alpha]_D^{22} + 69$ (c 0.5, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 2); δ 8.00–6.90 (m, 21H, aromatic H), 3.86 (s, 3H, OCH₃), 2.10, 2.04 (2s, 6H, COCH₃); ISMS: m/z 989 [M+Na]⁺. Anal. Calcd for C₄₇H₄₃O₁₉NaS: C, 58.38; H, 4.48. Found: C, 58.10; H, 4.59.

3.20. 7-Methoxy-2-naphthyl O-(β -D-galactopyranosyl)-(1-3)- β -D-xylopyranoside (3)

A solution of **29** (345 mg, 0.4 mmol) in MeOH (10 mL) and CH₂Cl₂ (5 mL) was treated with methanolic sodium

methoxide (1 M, 1 mL) for 2 h at rt, then was deionized with Amberlite IR-120 [H⁺] resin, filtered, and concentrated. Crystallization of the residue from MeOH gave **3** (173 mg, 92%); mp 238–240 °C; $[\alpha]_D^{22}$ –27 (*c* 1.0, (CH₃)₂SO); ¹H NMR (250 MHz, 1:1, (CD₃)₂SO/D₂O): carbohydrate ring protons (see Table 4); δ 7.75–6.95 (m, 6H, aromatic H), 3.84 (s, 3H, OCH₃); ¹³C NMR (62.8 MHz, 1:1, (CD₃)₂SO/D₂O): see Table 5; ISMS: m/z 491 [M+Na]⁺. Anal. Calcd for C₂₂H₂₈O₁₁: C, 56.41; H, 6.02. Found: C, 56.30; H, 6.12.

3.21. 7-Methoxy-2-naphthyl O-(β -D-galactopyranosyl)-($1\rightarrow 3$)-2-O-disodium phosphonato- β -D-xylopyranoside (4)

A mixture of 27 (325 mg, 0.3 mmol) and Pd/C (10%, 0.1 g) in 12:2:1 EtOAc/MeOH/H₂O (15 mL) was stirred under H₂ for 24 h, then was filtered through a pad of Celite, and concentrated. A suspension of the residue in water (10 mL) was treated with NaOH (1 M, 0.6 mL), and concentrated. A mixture of the residue and hydrazine hydrate (2.5 mL) in MeOH (10 mL) was stirred for 5 h at rt, then was cooled to 0 °C. Acetone (20 mL) was carefully added, and the mixture was stirred for 30 min, then was concentrated. The resulting syrup was triturated with acetone (20 mL), the solids were filtered off, washed with acetone, and a solution of the residue in water (3 mL) was eluted from a column $(2 \times 60 \text{ cm})$ of Sephadex LH-20 with water to afford 4 (143 mg, 80%) as a white hygroscopic powder; $[\alpha]_{\rm D}^{22}$ –41 (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.85–6.95 (m, 6H, aromatic H), 3.83 (s, 3H, OC H_3); ¹³C NMR (62.8 MHz, D_2O): see Table 5; ESIMS: m/z 547.4 [M-2Na+H]⁻. Anal. Calcd for C₂₂H₂₇Na₂O₁₄P: C, 44.60; H, 4.59. Found: C, 44.32; H, 4.71.

3.22. 7-Methoxy-2-naphthyl O-(6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 4)- β -D-xylopyranoside (5)

A mixture of **30** (387 mg, 0.4 mmol) and NaOH (4 M, 1.5 mL) in MeOH (12 mL) was stirred for 4 h at rt, then was diluted with water (10 mL). The pH of the solution was brought to \sim 3.5 with Amberlite IR-120 [H⁺] resin (pH meter control), and the mixture was filtered, concentrated and dried. The residue was extracted with acetone (3 × 5 mL), then was taken up in water (2 mL) and eluted from a column (2 × 60 cm) of Sephadex LH-20 with water to give **5** (206 mg, 90%) as a white solid; mp 215–216 °C (from MeOH/H₂O); [α]_D²² –45 (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.80–6.90 (m, 6H, aromatic H), 3.77 (s, 3H, OC $_3$); ¹³C NMR (62.8 MHz, D₂O): see Table 5; ESIMS: m/z 547.2 [M $_3$ -Na] Anal. Calcd for C₂₂H₂₇NaO₁₄S: C, 46.32; H, 4.77. Found: C, 46.04; H, 4.92.

3.23. 7-Methoxy-2-naphthyl O-(6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 4)-2-O-disodium phosphonato- β -D-xylopyranoside (6)

A mixture of **28** (320 mg, 0.27 mmol) and Pd/C (10%, 100 mg) in 12:2:1 EtOAc/MeOH/H₂O (15 mL) was stirred for 24 h under H₂, then was filtered and concentrated. The pH of a solution of the residue in 9:1, MeOH/H₂O was brought to ~8 with aq NaOH (pH meter control), and the mixture was concentrated. A suspension of the residue in MeOH (10 mL) was treated with hydrazine hydrate (3 mL) for 5 h at rt, then was cooled to 0 °C. Acetone (30 mL) was carefully added, and the mixture was concentrated. The residue was extracted with acetone $(3 \times 5 \text{ mL})$, then taken up in water (2 mL) and eluted from a column $(2 \times 60 \text{ cm})$ of Sephadex LH-20 with water to give 6 (160 mg, 85%) as a white powder; $[\alpha]_D^{22}$ –45 (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.85– 6.90 (m, 6H, aromatic H), 3.82 (s, 3H, OC H_3); ¹³C NMR (62.8 MHz, D_2O): see Table 5; ESIMS: m/z $649.2 \text{ [M-2Na+H]}^-$. Anal. Calcd for $C_{22}H_{26}Na_3O_{17}PS$: C, 38.05; H, 3.75. Found: C, 37.78; H, 3.93.

3.24. 4-Methoxyphenyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-di-tert-butylsilylene- β -D-galactopyranoside (32)

A mixture of 2,3,4,6-tetra-O-benzoyl-1-O-trichloroacetimidoyl-α-D-galactopyranose 31¹⁰ (4.45 g, 6 mmol), alcohol 22 (2.55 g, 4.80 mmol), and 4 Å powdered molecular sieves (1.0 g) in anhyd CH₂Cl₂ (40 mL) was stirred for 30 min under dry Ar. A solution of Me₃SiOTf in toluene (1 M, 0.9 mL) was added, and the mixture was stirred for 30 min at rt. Triethylamine (0.7 mL) was added, and the mixture was filtered and concentrated. Flash silica chromatography (11:1, toluene/ EtOAc, containing 0.2% of Et_3N) gave 32 (4.59 g, 86%) as a white foam; $[\alpha]_D^{22} + 90$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–6.70 (m, 29H, aromatic H), 3.75 (s, 3H, OC H_3), 1.12, 1.09 (2s, 18H, (C H_3)₃C); ISMS: m/z 553 [M+Na]⁺. Anal. Calcd for C₆₂H₆₄O₁₇Si: C, 67.13; H, 5.82. Found: C, 67.02; H, 5.80.

3.25. 4-Methoxyphenyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-2-O-benzoyl- β -D-galactopyranoside (33)

A mixture of **32** (4.44 g, 4 mmol) and Et₃N·3HF (1.63 mL, 10 mmol) in anhyd THF (50 mL) was stirred for 2 h at 0 °C, then was concentrated to \sim 10 mL, diluted with CH₂Cl₂ (200 mL), washed with water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. Crystallization of the residue from EtOH gave **33** (3.50 g, 90%); mp 230–232°C; $[\alpha]_D^{22}+13$ (c 1.0,

CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.10–6.70 (m, 29H, aromatic H), 3.68 (s, 3H, OC*H*₃), 3.15 (br s, 1H, *H*O-4), 2.20 (t, 1H, J = 6.0 Hz, HO-6); ISMS: m/z 991 [M+Na]⁺. Anal. Calcd for C₅₄H₄₈O₁₇: C, 66.94; H, 4.99. Found: C, 66.82; H, 5.06.

3.26. 4-Methoxyphenyl *O*-(2,3,4,6-tetra-*O*-benzoyl-β-D-galactopyranosyl)-(1→3)-2,4-di-*O*-benzoyl-6-*O*-levulinoyl-β-D-galactopyranoside (34)

A soln of 33 (3.39 g, 3.5 mmol), levulinic acid (0.49 g, 4.2 mmol) and DMAP (0.12 g, 1 mmol) in anhyd CH₂Cl₂ (50 mL) was treated in portions with DCC (0.87 g, 4.2 mmol), and the mixture was stirred for 2 h at rt, then was treated as described for the preparation of 18. A mixture of the residue and benzovl chloride (0.84 mL, 7 mmol) in anhyd pyridine (30 mL) was stirred overnight at rt. Methanol (0.5 mL) was added, and the mixture was diluted with CH₂Cl₂ (100 mL), washed with water, satd aq NaHCO3, and water, dried (MgSO₄), and concentrated. Flash silica chromatography (3:1, toluene/EtOAc) gave **34** (3.49 g, 85%) as a white foam; $[\alpha]_D^{22} + 111$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.15–6.70 (m, 34H, aromatic H), 3.72 (s, 3H, OCH₃), 2.75, 2.60 (2m, 4H, CH₂CO), 2.17 (s, 3H, $COCH_3$); ISMS: m/z 1194 [M+Na]⁺. Anal. Calcd for C₆₆H₅₈O₂₀: C, 67.69; H, 4.99. Found: C, 67.51; H, 5.02.

3.27. O-(2,3,4,6-Tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-2,4-di-O-benzoyl-6-O-levulinoyl-1-O-trichloroacetimidoyl- α -D-galactopyranose (35)

Compound **34** (3.27 g, 2.8 mmol) was treated as described for the preparation of **19**. Flash silica chromatography (4:1, toluene/EtOAc, containing 0.1% of Et₃N) gave **35** (2.54 g, 75%) as a colorless glass; $[\alpha]_D^{22} + 123$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 2); δ 8.54 (s, 1H, C=NH), 8.15–6.90 (m, 30H, Ph), 2.70, 2.54 (2m, 4H, C H_2 CO), 2.15 (s, 3H, COC H_3); ISMS: m/z 1225 [M+N H_4]⁺ for ³⁵Cl. Anal. Calcd for C₆₁ H_{51} Cl₃NO₁₉: C, 60.63; H, 4.25; N, 1.16. Found: C, 60.38; H, 4.31; N, 1.06.

3.28. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)- β -D-xylo-pyranoside (36)

A mixture of imidate **35** (846 mg, 0.7 mmol) and alcohol **13** (324 mg, 0.93 mmol) was treated as described for the preparation of **23** to give **36** (702 mg, 74%) as a white foam; $[\alpha]_D^{22} + 73$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 3); δ

8.15–6.95 (m, 36H, aromatic H), 4.10 (d, 1H, J = 4.0 Hz, Xylp HO-3), 3.88 (s, 3H, OC H_3), 3.08 (br s, 1H, Xylp HO-2), 2.78, 2.64 (2m, 4H, C H_2 CO), 2.20 (s, 3H, COC H_3); ISMS: m/z 1376 [M+Na]⁺. Anal. Calcd for C₇₅H₆₈O₂₄: C, 66.56; H, 5.06. Found: C, 66.42; H, 5.12.

3.29. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O- (37) and 2-O-acetyl- β -D-xylopyranoside (38)

A mixture of 36 (676 mg, 0.5 mmol) and dibutyltin oxide (136 mg, 0.55 mmol) was treated as described for the preparation of 24. Flash silica chromatography (3:2, toluene/EtOAc) gave first 38 (112 mg, 16%) as a colorless glass; $[\alpha]_D^{22} + 79$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 3); δ 8.20-6.85 (m, 36H, aromatic H), 4.15 (d, 1H, J = 4.0 Hz, Xylp HO-3), 3.87 (s, 3H, OCH₃), 2.75, 2.58 (2m, 4H, CH₂CO), 2.20, 2.06 (2s, 6H, COCH₃); ISMS: m/z 1418 $[M+Na]^+$. Anal. Calcd for C₇₇H₇₀O₂₅: C, 66.28; H, 5.06. Found: C, 66.08; H, 5.11. Next eluted was 37 (482 mg, 69%) isolated as a white foam; $[\alpha]_D^{22} + 45$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 3); δ 8.20–6.90 (m, 36H, aromatic H), 3.92 (s, 3H, OCH_3), 3.21 (d, 1H, J = 9.0 Hz, Xylp HO-2), 2.74, 2.58 (2d, 4H, CH₂CO), 2.16, 2.07 (2s, 6H, COCH₃); ISMS: m/z 1418 $[M+Na]^+$. Anal. Calcd for $C_{77}H_{70}O_{25}$: C, 66.28; H, 5.06. Found: C, 66.19; H, 5.14.

3.30. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl-6-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O-acetyl-2-O-dibenzyloxyphosphinyl- β -D-xylopyranoside (39)

Compound **37** (765 mg, 0.55 mmol) was treated as described for the preparation of **26** to give **39** (816 mg, 89%) as a white foam; $\left[\alpha\right]_{D}^{22}$ +73 (c 1.0, CHCl₃); 1 H NMR (250 MHz, CDCl₃): carbohydrate ring protons (see Table 3); δ 8.20–6.95 (m, 46H, aromatic H), 4.95 (2ABq, 4H, C H_2 Ph), 3.87 (s, 3H, OC H_3), 2.75, 2.60 (2m, 4H, C H_2 CO), 2.18, 1.94 (2s, 6H, COC H_3). Anal. Calcd for C₉₁H₈₃O₂₈P: C, 66.02; H, 5.05; P, 1.87. Found: C, 65.80; H, 5.15; P, 1.69.

3.31. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O-acetyl-2-O-dibenzyloxy-phosphinyl- β -D-xylopyranoside (40)

Compound **39** (0.75 g, 0.45 mmol) was treated as described for the preparation of **27** to give **40** (645 mg, 92%) as a white foam; $[\alpha]_D^{22} + 70$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate

ring protons (see Table 3); δ 8.20–6.90 (m, 46H, aromatic H), 4.96 (2ABq, 4H, C H_2 Ph), 3.87 (s, 3H, OC H_3), 1.96 (s, 3H, COC H_3). Anal. Calcd for C₈₆H₇₇O₂₆P: C, 66.31; H, 4.98. Found: C, 66.23; H, 5.07.

3.32. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl-6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-3-O-acetyl-2-O-dibenzyloxyphosphinyl- β -D-xylopyranoside (41)

Compound **40** (0.33 g, 0.21 mmol) was treated as described for the preparation of **28** to give **41** (317 mg, 90%) as a white powder; $[\alpha]_D^{22} + 71$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 3); δ 8.15–6.85 (m, 46H, aromatic H), 4.93 (2ABq, 4H, CH₂Ph), 3.85 (s, 3H, OCH₃), 1.86 (s, 3H, COCH₃); ISMS: m/z 1682 [M+Na]⁺. Anal. Calcd for C₈₆H₇₆O₃₉NaPS: C, 62.24; H, 4.62. Found: C, 62.02; H, 4.79.

3.33. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-2,3-di-O-acetyl- β -D-xylo-pyranoside (42)

Compound **36** (0.42 g, 0.3 mmol) was treated as described for the preparation of **29** to give **42** (362 mg, 90%) as a colorless glass; $[\alpha]_D^{22}$ +66 (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 3); δ 8.20–6.85 (m, 36H, aromatic H), 3.88 (s, 3H, OCH₃), 2.02, 2.00 (2s, 6H, COCH₃); ISMS: m/z 1362 [M+Na]⁺. Anal. Calcd for C₇₄H₆₆O₂₄: C, 66.36; H, 4.97. Found: C, 66.25; H, 5.05.

3.34. 7-Methoxy-2-naphthyl O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2,3,4-tri-O-benzoyl-6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-2,3-di-O-acetyl- β -D-xylopyranoside (43)

Compound **42** (0.34 g, 0.25 mmol) was treated as described for the preparation of **28** to give **43** (328 mg, 91%) as a white powder; $[\alpha]_D^{22} + 66$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, 3:1, CD₃OD/CDCl₃): carbohydrate ring protons (see Table 3); δ 8.20–6.90 (m, 36H, aromatic H), 3.86 (s, 3H, OCH₃), 2.01, 1.98 (2s, 6H, COCH₃); ISMS: m/z 1464 [M+Na]⁺. Anal. Calcd for C₇₄H₆₅O₂₇NaS: C, 61.66; H, 4.55. Found: C, 61.49; H, 4.63.

3.35. 7-Methoxy-2-naphthyl *O*-(β -D-galactopyranosyl)-($1\rightarrow 3$)-(β -D-galactopyranosyl)-($1\rightarrow 4$)- β -D-xylopyranoside (7)

Compound **42** (550 mg, 0.39 mmol) was treated as described for the preparation of **3**. Crystallization of the

residue from MeOH gave 7 (225 mg, 91%); mp 176–178 °C; $[\alpha]_D^{22}$ –7 (c 1.0, (CH₃)₂SO); ¹H NMR (250 MHz, 1:1, (CD₃)₂SO/D₂O): carbohydrate ring protons (see Table 4); δ 7.70–6.90 (m, 6H, aromatic H), 3.81 (s, 3H, OCH₃); ¹³C NMR (62.8 MHz, 1:1, (CD₃)₂SO/₂O): see Table 5; ESIMS: m/z 630.5 [M]⁻. Anal. Calcd for C₂₈H₃₈O₁₆: C, 53.33; H, 6.07. Found: C, 53.17; H, 6.12.

3.36. 7-Methoxy-2-naphthyl O-(β -D-galactopyranosyl)-($1\rightarrow 3$)-(β -D-galactopyranosyl)-($1\rightarrow 4$)-2-O-disodium phosphonato- β -D-xylopyranoside (8)

Compound **40** (400 mg, 0.24 mmol) was treated as described for the preparation of **4** to give **8** (160 mg, 88%) as a white powder; $[\alpha]_D^{22}$ –29 (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.80–6.95 (m, 6H, aromatic H), 3.82 (s, 3H, OC H_3); ¹³C NMR (62.8 MHz, D₂O): see Table 5; ³¹P NMR (162 MHz, D₂O); δ 3.85 (s); ESIMS: m/z 709.5 [M–2Na+H]⁻. Anal. Calcd for C₂₈H₃₇Na₂O₁₉P: C, 44.57; H, 4.94. Found: C, 44.28; H, 5.07.

3.37. 7-Methoxy-2-naphthyl O-(6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-(β -D-galactopyranosyl)-(1 \rightarrow 4)- β -D-xylopyranoside (9)

Compound **43** (340 mg, 0.23 mmol) was treated as described for the preparation of **5** to give **9** (145 mg, 84%) as a white powder; $[\alpha]_D^{22} - 27$ (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.85–6.90 (m, 6H, aromatic H), 3.81 (s, 3H, OC*H*₃); ¹³C NMR (62.8 MHz, D₂O): see Table 5; ESIMS: m/z 709.5 [M–Na]⁻. Anal. Calcd for C₂₈H₃₇NaO₁₉S: C, 45.90; H, 5.09. Found: C, 45.63; H, 5.21.

3.38. 7-Methoxy-2-naphthyl O-(6-O-sodium sulfonato- β -D-galactopyranosyl)-(1 \rightarrow 3)-(β -D-galactopyranosyl)-(1 \rightarrow 4)-2-O-disodium phosphonato- β -D-xylopyranoside (10)

Compound **41** (300 mg, 0.18 mmol) was treated as described for the preparation of **6** to give **10** (121 mg, 78%) as a white powder; $[\alpha]_D^{22} - 25$ (c 1.0, H₂O); ¹H NMR (250 MHz, D₂O): carbohydrate ring protons (see Table 4); δ 7.80–6.95 (m, 6H, aromatic H), 3.83 (s, 3H, OC H_3); ¹³C NMR (62.8 MHz, D₂O): see Table 5; ESIMS: m/z 811.6 [M–2Na+H]⁻. Anal. Calcd for C₂₈H₃₆Na₃O₂₂PS: C, 39.26; H, 4.24. Found: C, 38.98; H, 4.37.

Acknowledgements

This work was supported by Grants from Fonds National pour la Science (ACI BCMS 0152), Programme National sur les Maladies Ostéoarticulaires (INSERM Pro-A 0401), and Agence Nationale de la Recherche (ANR-05-Blan-0198-02, GT-GAG).

References

- Linhardt, R. J.; Toida, T. Acc. Chem. Res. 2004, 37, 431– 438
- Sugahara, K.; Kitagawa, H. Curr. Opin. Struct. Biol. 2000, 10, 518–527.
- Krishna, N. R.; Agrawal, P. K. Adv. Carbohydr. Chem. Biochem. 2000, 56, 201–234.
- Spillmann, D.; Lindahl, U. Curr. Opin. Struct. Biol. 1994, 4, 677–682.
- Gulberti, S.; Lattard, V.; Fondeur, M.; Jacquinet, J.-C.; Mulliert, G.; Netter, P.; Magdalou, J.; Ouzzine, M.; Fournel-Gigleux, S. J. Biol. Chem. 2005, 280, 1417–1425.
- 6. Jacquinet, J.-C. Carbohydr. Res. 2004, 339, 349-359.
- Thollas, B.; Jacquinet, J.-C. Org. Biomol. Chem. 2004, 2, 434–442.
- 8. Moses, J.; Oldberg, Å.; Cheng, F.; Fransson, L.-Å. *Eur. J. Biochem.* **1997**, *248*, 521–526.
- Tamura, J.-I.; Nishihara, J. J. Org. Chem. 2001, 66, 3074
 – 3083.
- 10. Rio, S.; Beau, J.-M.; Jacquinet, J.-C. *Carbohydr. Res.* **1991**, *219*, 71–90.
- 11. Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–235.
- Hudson, C. S.; Johnson, J. M. J. Am. Chem. Soc. 1915, 37, 2748–2751.
- Yu, K. L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979–982.
- Ohlsson, J.; Magnusson, G. Carbohydr. Res. 2000, 329, 49–55.
- Dax, K.; Wolflehner, W.; Weidmann, H. Carbohydr. Res. 1978, 65, 132–138.
- Catelani, G.; Colonna, F.; Marra, A. Carbohydr. Res. 1988, 182, 297–300.
- Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871–4874.
- Rio, S.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res. 1994, 255, 103–124.
- David, S.; Hanessian, S. Tetrahedron 1985, 41, 643–663.
- 20. Jacquinet, J.-C. Carbohydr. Res. 1990, 199, 153-181.
- 21. Schultheiss-Reimann, P.; Kunz, H. *Angew. Chem., Int. Ed. Engl.* **1983**, *22*, 62–63.
- Westman, E.; Strömberg, R. Nucleic Acids Res. 1994, 22, 2430–2431.
- Antonopoulos, A.; Favetta, P.; Jacquinet, J.-C.; Lafosse, M. J. Mass Spectrom. 2005, 40, 1628–1636.